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Abstract

There is a fundamental incompatibility between ef-
ficiency, interim individual rationality, and budget-
balance in mechanism design, even for extremely
simple settings. Yet it is possible to specify efficient
mechanisms that satisfy participation and budget-
balance constraints in expectation, prior to types
being realized. We do so here, in fact deriving
mechanisms that are individually rational for each
agent even ex post of other agents’ type realiza-
tions. However, participation must still bear some
risk of loss. For agents that are risk neutral, we
show how the center can extract the entire surplus
in expectation, or alternatively provide an equal ex-
pected share of the surplus for each participant,
without violating dominant strategy incentive com-
patibility, efficiency, or ex ante budget-balance. We
compare these solutions to a third efficient mecha-
nism we design explicitly to address risk aversion
in trade settings: payments are defined to mini-
mize the odds of loss, satisfying ex ante participa-
tion constraints for agents with attitudes toward risk
ranging from neutrality to high loss-aversion.

1 Introduction

We address a general problem of efficient decision-making
amongst self-interested agents when commitment can be es-
tablished prior to values being learned. Let us start with an
example: Two software companies decide to collaborate on
building a new web technology in advance of the upcoming
summer Olympic games two years in the future. It cannot
be determined in advance of the games what the most advan-
tageous way of using the technology will be: whether both
companies should provide it, whether just one should get full
control, whether it should be sold off, etc. Eventually each
company (agent) will privately learn its own value for each of
the possible choices and a decision will be made.

Can a budget-balanced payment mechanism be designed—
enforced by a third-party (“the center”)1 that shares the

1One can imagine the center as an agent that has engineered the
process, e.g., the parent company of subsidiaries that are run inde-
pendently but could yield net efficiency gains through collaboration.

agents’ expectations about how their own values will be
realized—that achieves a social-welfare maximizing outcome
in dominant strategies while, at the time the business union is
formed, establishing that each agent and the center expects
to gain from joining the venture? Furthermore, can we iden-
tify a mechanism that strikes an effective balance between
the likely benefit to each agent and to the center, so that even
those who are significantly loss-averse choose to participate?

Mechanism design uses monetary payments as a tool to
achieve desirable outcomes in decision settings with self-
interested agents, such as the above. Often the goal is to
maximize social welfare (efficiency). In addition to (and in
support of) efficiency, the properties of individual rational-
ity (IR) (no agent is made worse off from participating) and
no-deficit (net transfers from the mechanism to the agents are
non-positive) are typically essential. Consider, for instance,
bilateral trade, where a good is initially held by one agent and
there is another who potentially values the good higher than
the first. Ideally, the good would change hands if and only
if the second agent’s value is higher, and additionally both
agents would end up at least as well off from having partici-
pated as not, but without requiring a subsidy from the mech-
anism. Unfortunately this ideal is unreachable, as demon-
strated by the Myerson-Satterthwaite impossibility theorem
[Myerson and Satterthwaite, 1983].

In the face of this theorem there has been significant work
in designing mechanisms that do not achieve efficiency but
maintain interim2 IR and no-deficit (see, e.g., [Gresik and
Satterthwaite, 1989; Yoon, 2008; Rustichini et al., 1994;
Tatur, 2005]). Although making sacrifices in social welfare is
one natural response, another approach—novel, to our knowl-
edge, which we initiate here—is to maintain dominant strat-
egy efficiency and instead go outside the scope of the impos-
sibility result by moving the individual rationality demand
from interim to the requirement that each agent expect to
gain from participating ex ante of his own type realization
(given the probability distribution over his type) even ex post
of the other agents’ type realizations. This notion is signifi-
cantly weaker than fully ex post IR but significantly stronger
than fully ex ante IR, as it removes any need for agents to
form expectations or reason about the types of others. Hark-
ing back to the software company collaboration example, be-

2Ex post of your own type realization, ex ante of others’.
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fore learning its value function, company A should expect
to gain from joining the venture regardless of how company
B’s value function eventually turns out. We demonstrate the
existence of dominant strategy efficient solutions that always
satisfy this IR notion and are ex ante no-deficit, for arbitrary
distributions over types.

But, granting that a participation decision can be forced
prior to learning values, if the proposition agents face is
participation in a “risky” mechanism that is expected to
bring gains but may bring losses, agent attitudes toward risk
become critical. There is abundant evidence that in eco-
nomic settings people are not completely neutral towards risk,
but rather often manifest significant loss-aversion (see, e.g.,
[DellaVigna, 2009]). Yet the prevailing assumption in mech-
anism design research is risk neutrality,3 an unsettling mis-
match with reality. In this paper, in addition to designing
mechanisms that have desirable revenue or fairness proper-
ties for risk neutral agents, we will provide a mechanism that
is robust to a wide range of attitudes towards loss, including
significant loss-aversion.

In the mechanisms we propose, the payment for each
agent is defined in a way that exploits valuation informa-
tion reported by the others. This makes the mechanisms
especially compelling (less risky) when types are corre-
lated, i.e., when considering any agent i, knowing the types
of agents other than i provides good information about i’s
type. And, interestingly, the literature on mechanism design
in correlated types settings helps motivate our concern for
agent attitudes towards risk. Following important results by
Cremér and McLean [1988] and McAfee and Reny [1992],4

D’Aspremont et al. [1993] demonstrated that when an appar-
ently rather mild condition is satisfied, technically all social
choice functions (not just efficient ones) can be implemented
in Bayes-Nash equilibrium. The tension between these the-
oretical results and practice casts suspicion on Bayes-Nash
equilibrium as a solution concept and the assumption that
prior beliefs are common across all agents,5 but also strongly
highlights the implausibility of the risk neutrality assumption.

In the current paper we obtain dominant strategy solutions,
which allows us to move away from the risk neutrality as-
sumption by incorporating loss-aversion (in Section 4), and
also to impose a much more modest assumption about prior
beliefs: we assume only that each agent i and the center form
the same conditional distribution over i’s type given any pro-
file of realized types for the others; this plays no incentive
role for the agent’s type reporting (it is required only for the
IR property), and agents need not share any common beliefs
with other agents whatsoever.

3Exceptions include work addressing revenue maximization in
auctions where either the seller or the buyers are risk-averse (see,
e.g., [Maskin and Riley, 1984; Sundararajan and Yan, 2010]).

4For a single-item auction setting with common priors over the
joint value distribution, [Cremér and McLean, 1988] specify a dom-
inant strategy efficient mechanism satisfying ex ante IR in which the
seller obtains the entire surplus.

5The common prior assumption is highly controversial because
it seems to map so poorly to how real individuals form beliefs, as it
implies that disagreement is solely a result of asymmetric informa-
tion (see, e.g., [Morris, 1995]).

2 Preliminaries

There is a set of of agents I = {1, . . . , n} and a set of out-
comes O. An agent i ∈ I has type θi ∈ Θi and value function
vi : Θi×O → �. The joint type space is Θ = Θ1× . . .×Θn;
θ ∈ Θ is a vector of agent types θ1, . . . , θn; θ−i ∈ Θ−i

is the vector of types excluding that of agent i. v(θ, o) =∑
i∈I vi(θi, o) and v−i(θ−i, o) =

∑
j∈I\{i} vj(θj , o). We

assume that ∀θ ∈ Θ, ∃o ∈ O such that v(θ, o) ≥ 0. A choice
function f : Θ → O maps a profile of agent types to an out-
come. We use f∗ to denote an efficient choice function, and
f∗(θ−i) for an outcome that maximizes the value to agents
other than i, given their types θ−i. That is, ∀θ ∈ Θ: f∗(θ) ∈
argmaxo∈O v(θ, o) and f∗(θ−i) ∈ argmaxo∈O v−i(θ−i, o).
In order to elicit truthful reporting of private information, we
will be doing mechanism design (see, e.g., [Jackson, 2000]

for an introduction). A mechanism (f, T ) elicits a report θ̂i

of each agent’s private type, executes outcome f(θ̂), and then
implements payments T = (T1, . . . , Tn), where Ti : Θ → �
is a monetary transfer function defining the payment to agent
i. We assume quasilinear utility. In this paper a choice func-
tion f∗ and a truthful mechanism will be the context under
which all values are considered, so we often write vi(θ) and
v(θ) as shorthand for vi(θ, f

∗(θ)) and v(θ, f∗(θ)).
To analyze IR properties we are concerned with the “net

value” or surplus obtained by agents compared with in the ini-
tial state (e.g., in a trade setting, the outcome where no goods
are exchanged), so we normalize valuations accordingly. For
instance, in a bilateral trade example where the initial-holder
of the good has value 0.4 and the buyer has value 0.7, letting
o2 and o1 be the outcomes where, respectively, trade does and
does not occur, valuations will be as in Table 1.

v1 v2

o1 0 0

o2 −0.4 0.7

Table 1: Normalized value in a bilateral trade example.

A mechanism (f, T ) is ex ante individually rational (IR)
if and only if each agent’s a priori expected equilibrium util-

ity is non-negative, i.e., ∀i ∈ I , �θ̃[vi(θ̃i, f(θ̃))+Ti(θ̃)] ≥ 0,

where there is a prior distribution over types and θ̃ is a random
variable representing the profile of types that will be realized.
The mechanisms we propose will satisfy the following some-
what stronger IR property for each agent i, where the expec-
tation is taken using the actual reported types of agents other
than i, considering only i’s type as an unknown variable:

Definition 1 (ex ante* individually rational). A truthful
mechanism (f, T ) is ex ante* IR if and only if ∀i ∈ I ,

∀θ−i ∈ Θ−i, �θ̃i
[vi(θ̃i, f(θ̃i, θ−i)) + Ti(θ̃i, θ−i) | θ−i] ≥ 0.

Ex ante no-deficit is satisfied if and only if∑
i∈I �θ̃[Ti(θ̃)] ≤ 0, and ex post no-deficit if and only

if
∑

i∈I Ti(θ) ≤ 0, for every θ ∈ Θ. The ex ante properties
are defined for risk-neutral agents; in the evaluation section
we will see how the proposed mechanisms fare when
participants (including the center) are instead loss-averse.
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effic. • ◦ • ◦ •

BB • • • • ◦ ◦

IR • • • ◦

∅ ∅ VCG AGV several this paper

Table 2: Summary of efficiency, budget-balance, and in-
dividual rationality properties in mechanism design. The
Myerson-Satterthwaite impossibility result is reflected in the
first two columns. • denotes dominant strategy efficiency,
ex post IR, or ex post no-deficit; ◦ denotes Bayes-Nash effi-
ciency, ex ante IR, or ex ante no-deficit. AGV achieves strong
budget-balance and the mechanisms in this paper achieve a
stronger-than-ex-ante IR property.

2.1 Related previous mechanisms

Given a natural broadness condition on the typespace, dom-
inant strategy truthful and efficient mechanisms are com-
pletely characterized by the Groves class [Holmstrom, 1979],
which choose efficient outcomes and implement transfer
function Ti(θ) = v−i(θ−i, f

∗(θ)) + hi(θ−i) for each agent
i, for arbitrary function hi : Θ−i → �. That is, each
agent’s payment equals the others’ aggregate reported value
plus or minus some quantity independent of the agent’s re-
port. The VCG mechanism [Vickrey, 1961; Clarke, 1971;
Groves, 1973] is a special instance of this class that defines
Ti(θ) = v−i(θ−i, f

∗(θ)) − v−i(θ−i, f
∗(θ−i)).

The most well-known previous mechanism that is not
geared towards satisfying interim IR is the AGV (or
“expected externality”) mechanism of Arrow [1979] and
d’Aspremont and Gerard-Varet [1979]. In AGV each agent i
is payed the expected value others will obtain given i’s actual
reported type, considering only the probability distribution
over others’ types, and then charged a budget balancing term
independent of his report. AGV is not a Groves mechanism
because the payment is the expected value achieved by the
others rather than their actual obtained value, so truthfulness
is obtained only in Bayes-Nash equilibrium. Moreover, truth-
fulness breaks down if types are correlated. VCG is ex post
no-deficit and AGV is strongly budget-balanced (no deficit,
no revenue). One reason these mechanisms are remarkable is
that, moreover, in settings where agents obtain non-negative
value for every outcome, VCG is ex post individually rational
and AGV is ex ante individually rational. But many important
settings do admit negative values. For instance, in the bilat-
eral trade example depicted in Table 1, the optimal outcome
from agent 2’s perspective is that in which he gets the good,
but agent 1’s value there is −0.4. Without making an assump-
tion akin to no-negative-values, neither VCG nor AGV satisfy
even ex ante IR in settings such as bilateral trade.

So these previous mechanisms leave something important
to be desired, and more broadly, by [Myerson and Satterth-
waite, 1983] we know that even in simple settings there is no
interim IR and no-deficit mechanism that is efficient even in
Bayes-Nash equilibrium (see Table 2 for a summary of these
results). But that negative fact still leaves the possibility of
mechanisms that are ex ante* IR, and that’s what we explore.

3 Mechanisms

In this section we present three distinct mechanisms that di-
vide the surplus in different ways. The first is oriented to-
wards deficit avoidance, the second towards equal division,
and the third is optimized to minimize risk and achieve partic-
ipation in asymmetric settings with loss-aversion. In Section
4 we will evaluate and compare their performance.

3.1 Extracting all surplus in expectation

In the first mechanism we propose, the transfer for each agent
is set in a manner that—in expectation—leads to extraction of
the entire expected surplus of the mechanism by the center;
yet ex ante* individual rationality is maintained.

Mechanism 1 (surplus extracting). A mechanism
(f∗, T ), where, ∀i ∈ I and θ ∈ Θ:

Ti(θ) = v−i(θ)− �θ̃i
[v(θ̃i, θ−i) | θ−i] (1)

The mechanism makes the incentive-aligning Groves pay-
ment to each agent i, and charges each i an amount equal
to the expected social-surplus that will result, given the type
reports of the other agents but considering i’s type as an un-
known (with the expectation based on the prior distribution
over θi).

6 To illustrate the mechanism, consider the bilateral
trade example of Table 1 where the seller (agent 1) has value
0.4 and the other agent 0.7, and assume that, a priori, the dis-
tribution over each agent’s value for the good is uniform on
[0, 1] and independent of the other agent’s (his value for not
receiving the good is known to be 0). We can compute:

T1(θ) = v2(θ)− �θ̃1
[v2(θ̃1, θ2) | θ2]− �θ̃1

[v1(θ̃1, θ2) | θ2]

= 0.7− (0.7 · 0.7 + 0.3 · 0)−
(∫ 0.7

0

−x dx+ 0.3 · 0
)

= 0.7− 0.49 +
0.49

2
= 0.455, and

T2(θ) = v1(θ)− �θ̃2
[v1(θ1, θ̃2) | θ1]− �θ̃2

[v2(θ1, θ̃2) | θ1]

= − 0.4 + 0.6 · 0.4−

∫ 1

0.4

x dx = −0.58

Agent 1 obtains a final net utility (including payments) of
−0.4+0.455 = 0.055; agent 2 obtains 0.7−0.58 = 0.12, and
the center obtains 0.58−0.455 = 0.125. Thus in this example
there is no deficit and both agents are better off from having
participated. We will see (in Theorem 2) that in this kind of
bilateral trade setting a deficit never results. In the general
case, with no assumptions about the domain or distributions
over agent types, we have the following.

Theorem 1. For all distributions over types, Mechanism 1 is
truthful and efficient in dominant strategies, ex ante* individ-
ually rational, and ex ante no-deficit.

Proof. The fact that the mechanism is truthful and effi-
cient in dominant strategies follows from the fact that it is

6Expanding out the shorthand, Mechanism 1 defines:

Ti(θ) = v−i(θ−i, f
∗(θ))− �

θ̃i
[v((θ̃i, θ−i), f

∗(θ̃i, θ−i)) | θ−i].
Note that θi does not appear in the second term.
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a Groves mechanism—the efficient outcome according to
agent reports is chosen, and each agent i’s payment equals
the other agents’ reported aggregate value minus a quantity

(�θ̃i
[v(θ̃i, θ−i) | θ−i]) independent of his report (recall that θ̃i

is a random variable, not a reported type).
Now note that any agent i’s expected net utility prior to

realization of his type, but given arbitrary θ−i, is:

�θ̃i
[vi(θ̃i, θ−i) + v−i(θ̃i, θ−i)− v(θ̃i, θ−i) | θ−i] = 0, (2)

so ex ante* individual rationality is satisfied.
Finally, consider the expected (ex ante) revenue to the cen-

ter in the dominant strategy truthtelling equilibrium. Given
the types of agents other than i, but considering i’s type re-
alization as unknown, the expected payment to the center

from i is: �θ̃i
[v(θ̃i, θ−i) | θ−i] − �θ̃i

[v−i(θ̃i, θ−i) | θ−i] =

�θ̃i
[vi(θ̃i, θ−i) | θ−i]. So the total ex ante expected equilib-

rium revenue is:∑
i∈I

�θ̃−i

(
�θ̃i

[vi(θ̃i, θ̃−i) | θ̃−i]
)
=

∑
i∈I

�θ̃[vi(θ̃)] = �θ̃[v(θ̃)]

(3)

This quantity is greater than or equal to 0 by efficiency of the
mechanism, and thus ex ante no deficit holds.

The following two theorems7 demonstrate that the no-
deficit property is ex post in important natural settings of bi-
lateral trade, single-item allocation more generally, and even
less structured domains. A single-item trade setting is one in
which only one agent stands to obtain negative value from any
outcome (the seller, if trade occurs); a distribution over agent
types satisfies the no negative expected externalities condition

if: ∀i ∈ I, ∀θ−i ∈ Θ−i, �θ̃i
[vi(θ̃i, f

∗(θ−i)) | θ−i] ≥ 0.

Theorem 2. Mechanism 1 is ex post no-deficit for all single-
item trade settings where the distribution over values for the
item is symmetric and independent across agents.

Theorem 3. Mechanism 1 is ex post no-deficit for all distri-
butions over types that meet the no negative expected exter-
nalities condition.

This last theorem helps specifically illustrate the tradeoff
between the VCG mechanism and Mechanism 1. Both mech-
anisms are always efficient in dominant strategies. In no neg-
ative externalities settings VCG is ex post no-deficit and ex
post IR, whereas Mechanism 1 is ex post no-deficit and only
ex ante* IR. But in settings where the no negative external-
ities condition is not met, Mechanism 1 retains ex ante* IR
and ex ante or ex post no-deficit, while VCG does not retain
even ex ante IR.

3.2 Evenly sharing the expected surplus

One could say Mechanism 1 achieves all the properties we
could legitimately hope for, given the Myerson-Satterthwaite
theorem and taking efficiency as a hard constraint. We know
that improving the IR property to ex post is unattainable with-
out giving something else up. However, that coarse level of

7Proofs for all results subsequent to Theorem 1 are omitted here
due to lack of space.

analysis obscures the fact that under Mechanism 1 agents will
clearly not fare as well as they would under another mecha-
nism with the same high-level properties. The expected rev-
enue generated by any mechanism cannot be greater than that
of Mechanism 1 without violating ex ante IR: in expectation,
all of the surplus ends up in the hands of the center. That
is likely to lead to more instances of “participation regret” in
practice than would a mechanism that distributes the surplus
more equitably.

Mechanism 2 (surplus sharing). A mechanism (f∗, T ),
where, ∀i ∈ I and θ ∈ Θ:

Ti(θ) = v−i(θ)−
n

n+ 1
�θ̃i

[v(θ̃i, θ−i) | θ−i] (4)

Theorem 4. For all distributions over types, Mechanism 2 is
truthful and efficient in dominant strategies, ex ante* individ-
ually rational, and ex ante no-deficit. The a priori expected
payoff to each agent and the center is identical in the truthful
equilibrium.

3.3 A parameterized variant for trade settings

Consider an asymmetric setting, for instance where there is an
initial-holder of a resource that, initially, is of uncertain value
(imagine, e.g., start-up companies and a segment of wireless
spectrum or plot of land containing rare essential natural re-
sources). To efficiently reallocate the resource it is essential
that the initial-holder and the center participate. Here we de-
sign a parameterized mechanism with that fact in mind, pro-
viding incentives for other agents as well, and allowing for
a balance to be customized. The mechanism has parameter
ρ which defines the expected percentage share of the social
surplus that the initial-holder and the center each get.8

Mechanism 3 (risk minimizing). With parameter ρ ∈
�, for settings with an agent h who is the initial-holder
of items for reallocation. A mechanism (f∗, T ), where,
∀θ ∈ Θ:

Th(θ) = v−h(θ)− (1 − ρ) · �θ̃h
[v(θ̃h, θ−h) | θ−h], and

(5)

Ti�=h(θ) = v−i(θ)−
n− 2 + 2ρ

n− 1
· �θ̃i

[v(θ̃i, θ−i) | θ−i]

(6)

Theorem 5. For all distributions over types,9 for all ρ ∈
[0, 0.5], Mechanism 3 is truthful and efficient in dominant
strategies, ex ante* individually rational, and ex ante no-
deficit.

As we consider the Mechanism 3 schema, a natural opti-
mization problem arises. Ideally neither the center nor any
agent ends up worse off for having participated. We know

8Mechanism 3 has Mechanism 2 as a special case; the two coin-
cide when ρ is set to 1

n+1
in Mechanism 3.

9Note that the theorem holds in all settings; h can be identified
arbitrarily in non-trade environments. The mechanism was designed
to be particularly efficacious for asymmetric settings like trade.
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this to be impossible to achieve universally; however, we can
tailor our mechanism to try to achieve it as often as possible.
Specifically, given a problem domain defined by distributions
over agent types, we can optimize the choice of parameter ρ.
By Theorem 5, whatever our choice of ρ ∈ [0, 0.5], we will
achieve ex ante* IR and ex ante no-deficit. Let u

ρ
i (θ) denote

the dominant strategy (truthful) equilibrium payoff to agent i
when type profile θ is reported, and let uρc(θ) be the revenue.
We can set:

ρ ∈ argmin
ρ′∈[0,0.5]

max
i

{Prθ̃(u
ρ′

i (θ̃) < 0), Prθ̃(u
ρ′

c (θ̃) < 0)} (7)

Another optimization criterion, which we adopt in the next
section in forming Figure 2, maximizes the loss-aversion co-
efficient that still leads to participation for every agent.

4 Evaluation

Our primary goal in this paper was to design efficient mech-
anisms geared towards maximizing participation. In the con-
text of agents that are not risk-neutral, but rather exhibit loss-
aversion, this goal is tightly tied to minimizing the probability
of utility loss. We consider the following simple and widely-
adopted ([Fehr and Goette, 2007] is a recent example) model
of loss-averse utility. Each agent i has loss-aversion coeffi-
cient λi ≥ 1 and, when i obtains value plus payment equal to
x ∈ �, his experienced utility is:

ui(x) =

{
x if x ≥ 0

λi · x if x < 0
(8)

λi = 1 is the risk-neutral case, and as λi grows agents
will be less and less likely to participate in a mechanism that
brings significant probability of loss. We now evaluate the
mechanisms proposed in the last section, first in terms of raw
loss probabilities, then in light of this loss-averse behavioral
model, for population size ranging from 2 to 20. We specifi-
cally address the following questions:

1. How do the mechanisms compare in terms of probability
of utility loss for agents and probability of deficit for the
center? (Figure 1)

2. What is the maximum loss-aversion coefficient, held by
any agent or the center, for which each mechanism will
continue to be ex ante* IR? I.e., given that agent utilities
are as in Eq. (8), what is the loss-aversion point at which
some agent or the center would ex ante opt not to par-
ticipate, thus precluding efficiency of the mechanism?
(Figure 2)

The results of these queries will depend on the distribution
over agent types that one assumes. We considered uniform
and normal distributions, for both symmetric settings (where
all agents’ surplus values are drawn the same way) and trade
settings (where one agent only stands to lose his value). The
distinction between uniform and normal distributions was mi-
nor, and for space reasons we present only the uniform val-
ues single-item trade case here. The quantities we wish to
consider are complex enough to make analytical evaluation
impractical, so we computed estimates with a Monte Carlo
sampling method.10
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Figure 1: Comparison of mechanisms by loss-probability in a
uniform values trade setting. Mechanisms 1 and AGV never
yield a deficit, while Mechanism 3 is superior in avoiding
agent utility loss. “M3*” represents the instance of the Mech-
anism 3 class satisfying Eq. (7).

For query (1.) we include results for AGV as a reference
point, although it’s a poor reference point (it has an “un-
fair advantage”) because it fails to generally satisfy ex ante
IR (it is ex ante IR for this setting for population size 3 or
greater) and is efficient only in the much weaker Bayes-Nash
equilibrium, and only for risk-neutral agents. AGV is not a
valid comparison point for query (2.) at all because with loss-
averse agents it is not even Bayesian incentive compatible.
It is the strategyproofness of our proposed mechanisms that
makes them robust to different utility models, including loss-
aversion. Thus the most meaningful comparison is between
Mechanisms 1, 2, and 3 introduced in this paper.

With respect to query (1.), we see in Figure 1 that the opti-
mized Mechanism 3 (with ρ between 0.32 and 0.4 depending
on population size, here) yields the least loss probability for
agents—even less than that of AGV; it also achieves a low
probability of deficit that converges to 0 as the number of
agents grows.

10For Figure 2 data-points were computed via a binary search

over loss-aversion coefficients to get a course estimate of the point λ
where utility transitions from positive to negative, coupled with in-
spection of expected utility estimates in the space around λ to more
precisely identify the 0 point.
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Figure 2: Maximum loss-aversion coefficient for which each
mechanism remains efficient, as a function of the number of
agents. For a trade setting with uniform values. “M3+” is
defined to maximize feasible loss-aversion coefficient.

With respect to (2.), the results are stark. We see in Figure
2 that the optimum of the Mechanism 3 class is very effective
and far superior to the other mechanisms. Since in Mecha-
nism 1 expected utility is 0 for all agents, any positive loss-
aversion will preclude participation; Mechanism 2 gets more
risky for the initial-holder of the good (and less risky for oth-
ers) as population size grows, even though expected utility in-
creases for all. Mechanism 3 alone (with ρ ≈ 0.35, here) gets
less risky with population size for all agents. Even in a set-
ting with only 5 agents, if all agents and the center weigh the
utility of lost value 3 times as much as gained value (λ = 3),
all will choose to participate under Mechanism 3 but will not
come close to participation in the other mechanisms. Tver-
sky and Kahneman [1992] experimentally find loss-aversion
coefficient λ about 2.25, which Mechanism 3 clears for all
population sizes.

5 Discussion
In the introduction we mentioned that a significant amount of
work in mechanism design has, in the face of the Myerson-
Satterthwaite impossibility theorem, either made strong dis-
tribution assumptions or sacrificed efficiency in order to
achieve interim individual rationality. There is often good
reason to prioritize IR in this way: a clever mechanism isn’t
any use if you can’t get agents to show up for it. Particu-
larly in resource “reallocation” problems, where an agent is
the initial holder of a good to potentially be traded, it is often
natural that the good holder would know his value and simply
not participate if he expects to lose out from doing so.

Of course when participation can be forced, the results
of this paper are useful for minimizing ex post regret and
grievance among coerced parties. But more importantly, there
are scenarios where expecting to benefit before learning your
value is sufficient for voluntary participation. One exam-
ple has to do with new goods, where even the initial owner
doesn’t have private information about his value at first, and
faces a narrow window of opportunity for trade. Another nat-
ural setting is that of agreements that are extended over time,
as in the collaboration example we began the paper with. In

such cases a social planner with decision-making authority
who prioritizes efficiency but is unwilling to subsidize deci-
sions (though he may be willing to incur some small risk) can
propose a “take it or leave it” offer for agents to participate
in a decision process—a contractual obligation decided upon
before learning types. Agents will participate if and only if
expected outcomes fall within their risk tolerances. This pa-
per is distinguished from previous work by addressing such
“risky participation” settings and the implications of different
risk attitudes therein. We demonstrated that solutions tailored
in the style of Mechanism 3—coupled with the analysis quan-
tifying and limiting the probability of loss—will elicit partic-
ipation even from agents that are significantly loss-averse.
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